Why use Bioconductor? From a user perspective, the answer is clear: because many statisticians, bioinformaticians, and computer scientists have spent time writing methods and algorithms specifically for biological (often genomic) data. A reason for this (why many people have contributed to this project) is that there is a shared infrastructure for common data types. This infrastructure is built up of object classes. An example of a class is GRanges (stands for “genomic ranges”), which is a way to specify a set of ranges in a particular genome, e.g. from basepair 101 to basepair 200 on chromosome 1 of the human genome (version 38).

What’s an object? Well everything in R is an object, but usually when we talk about Bioconductor objects, we mean data structures containing many attributes, so more complex than a vector or matrix. And the objects have specific methods that help you either access the information in the object, run analyses on the object, plot the object, etc. Bioconductor also allows for class hierarchy, which means that you can define a class of object that inherits the structure and methods of a superclass on which it depends. This last point is mostly important for people who are developing new software for Bioconductor (maybe that’s you!)

Getting started with Bioconductor

Before we get started, you need to know how to install Bioconductor packages. The most important details are:

How do you know if a package is a Bioconductor package? For one thing, you can just google the package name and you’ll see either CRAN or Bioconductor as a first result (packages must be in one or the other, they are not allowed to be on both repositories). But also, you can use Bioconductor’s installation function to install any packages, even ones on CRAN. By the way, you can install multiple packages at once by making a string vector: BiocManager::install(c("foo","bar"))

Why all this stress on versioning? This is because the packages in Bioconductor are highly interdependent, and also some are very dependent on R internals. So that the project can guarantee the code will run and not give errors on many systems (Linux, Mac and Windows have support for the majority of Bioconductor packages), new development is locked into cycles, such that a release of Bioconductor shouldn’t contain any two packages which conflict and could potentially cause errors.

Details: of course, Bioconductor is also a project, made up of people. There is a core team which is supported by an NIH grant, and developers who contribute to the open source Bioconductor packages. There are also yearly conferences (one in US, one in Europe, and one in Asia, etc.).

Working with Bioconductor objects

We will introduce the core Bioconductor objects this week. In this particular document, we will discuss one of the most important classes of object, which is the SummarizedExperiment, or SE.

SEs have the structure:

A diagram of this 3-part structure can be found here.

In SE, the 3 parts of the object are called 1) assay, 2) colData and 3) rowData or rowRanges.

Note: There was a class of object that came before the SE, called the ExpressionSet, which was used primarily to store microarray data. Here we will skip over the ExpressionSet, and just look at SEs.

It helps to start by making a small toy SE, to see how the pieces come together. (Often you won’t make an SE manually, but it will be downloaded from an external source, or generated by a function that you call, e.g. tximeta or some other data loading function.)

library(SummarizedExperiment)
col_data <- data.frame(sample=factor(1:6),
                       condition=factor(c("A","A","B","B","C","C")),
                       treated=factor(rep(0:1,3)))
col_data
##   sample condition treated
## 1      1         A       0
## 2      2         A       1
## 3      3         B       0
## 4      4         B       1
## 5      5         C       0
## 6      6         C       1

An important aspect of SEs is that the rows can optionally correspond to particular set of GRanges, e.g. a row of an SE could give the number of RNA-seq reads that can be assigned to a particular gene, and the row could also have metadata in the 3rd slot including, e.g. location of the gene in the genome. In this case, we use the rowRanges slot to specify the information.

If we don’t have ranges, we can just put a table on the “side” of the SE by specifying rowData.

I will show in the example though how to provide rowRanges. Let’s use the first 10 genes in the Ensembl database for human. The following code loads a database, pulls out all the genes (as GRanges), removes extra “non-standard” chromosomes, and then subsets to the first 10 genes.

library(EnsDb.Hsapiens.v86)
txdb <- EnsDb.Hsapiens.v86
g <- genes(txdb)
g <- keepStandardChromosomes(g, pruning.mode="coarse")
row_ranges <- g[1:10]

We will make up some simulated “expression” measurements, and then store these in the SE. I call list so I can name the matrix, otherwise it would not be named.

exprs <- matrix(rnorm(6 * 10), ncol=6, nrow=10)
se <- SummarizedExperiment(assay = list("exprs" = exprs),
                           colData = col_data,
                           rowRanges = row_ranges)
se
## class: RangedSummarizedExperiment 
## dim: 10 6 
## metadata(0):
## assays(1): exprs
## rownames(10): ENSG00000223972 ENSG00000227232 ... ENSG00000238009 ENSG00000239945
## rowData names(6): gene_id gene_name ... symbol entrezid
## colnames: NULL
## colData names(3): sample condition treated

We see this object has one named matrix. The object could have multiple matrices (as long as these are the same shape). In that case you could access the first with assay and in general by name, e.g. assay(se, "exprs") or equivalently assays(se)[["exprs"]] .

assayNames(se)
## [1] "exprs"

Finally, if we wanted to add data onto the rows, for example, the score of a test on the matrix data, we use the metadata columns function, or mcols:

mcols(se)$score <- rnorm(10)
mcols(se)
## DataFrame with 10 rows and 7 columns
##                         gene_id    gene_name           gene_biotype seq_coord_system       symbol
##                     <character>  <character>            <character>      <character>  <character>
## ENSG00000223972 ENSG00000223972      DDX11L1 transcribed_unproces..       chromosome      DDX11L1
## ENSG00000227232 ENSG00000227232       WASH7P unprocessed_pseudogene       chromosome       WASH7P
## ENSG00000278267 ENSG00000278267    MIR6859-1                  miRNA       chromosome    MIR6859-1
## ENSG00000243485 ENSG00000243485    MIR1302-2                lincRNA       chromosome    MIR1302-2
## ENSG00000237613 ENSG00000237613      FAM138A                lincRNA       chromosome      FAM138A
## ENSG00000268020 ENSG00000268020       OR4G4P unprocessed_pseudogene       chromosome       OR4G4P
## ENSG00000240361 ENSG00000240361      OR4G11P unprocessed_pseudogene       chromosome      OR4G11P
## ENSG00000186092 ENSG00000186092        OR4F5         protein_coding       chromosome        OR4F5
## ENSG00000238009 ENSG00000238009 RP11-34P13.7                lincRNA       chromosome RP11-34P13.7
## ENSG00000239945 ENSG00000239945 RP11-34P13.8                lincRNA       chromosome RP11-34P13.8
##                                       entrezid      score
##                                         <list>  <numeric>
## ENSG00000223972 100287596,100287102,727856,... -0.8416606
## ENSG00000227232                             NA -0.4797526
## ENSG00000278267                      102466751  0.2195530
## ENSG00000243485            105376912,100302278  1.1615049
## ENSG00000237613           654835,645520,641702 -0.5559217
## ENSG00000268020                             NA -1.7221926
## ENSG00000240361                             NA -2.2658853
## ENSG00000186092                          79501 -0.4598345
## ENSG00000238009                             NA -0.0350413
## ENSG00000239945                             NA -0.3726303

Adding data to the column metadata is even easier, we can just use $:

se$librarySize <- runif(6,1e6,2e6)
colData(se)
## DataFrame with 6 rows and 4 columns
##     sample condition  treated librarySize
##   <factor>  <factor> <factor>   <numeric>
## 1        1         A        0     1637581
## 2        2         A        1     1179905
## 3        3         B        0     1483914
## 4        4         B        1     1412396
## 5        5         C        0     1374390
## 6        6         C        1     1016842

Using the ranges of a SE

How does this additional functionality of the rowRanges facilitate faster data analysis? Suppose we are working with another data set besides se and we find a region of interest on chromsome 1. If we want to pull out the expression data for that region, we just ask for the subset of se that overlaps. First we build the query region, and then use the GRanges function overlapsAny within single square brackets (like you would subset any matrix-like object:

query <- GRanges("1", IRanges(25000,40000))
se_sub <- se[overlapsAny(se, query), ]

We could have equivalently used the shorthand code:

se_sub <- se[se %over% query,]

We get just three ranges, and three rows of the SE:

rowRanges(se_sub)
## GRanges object with 3 ranges and 7 metadata columns:
##                   seqnames      ranges strand |         gene_id   gene_name           gene_biotype
##                      <Rle>   <IRanges>  <Rle> |     <character> <character>            <character>
##   ENSG00000227232        1 14404-29570      - | ENSG00000227232      WASH7P unprocessed_pseudogene
##   ENSG00000243485        1 29554-31109      + | ENSG00000243485   MIR1302-2                lincRNA
##   ENSG00000237613        1 34554-36081      - | ENSG00000237613     FAM138A                lincRNA
##                   seq_coord_system      symbol             entrezid     score
##                        <character> <character>               <list> <numeric>
##   ENSG00000227232       chromosome      WASH7P                 <NA> -0.479753
##   ENSG00000243485       chromosome   MIR1302-2  105376912,100302278  1.161505
##   ENSG00000237613       chromosome     FAM138A 654835,645520,641702 -0.555922
##   -------
##   seqinfo: 25 sequences (1 circular) from GRCh38 genome
assay(se_sub)
##                       [,1]        [,2]        [,3]        [,4]       [,5]       [,6]
## ENSG00000227232 -0.7110513 -0.01052055  0.05751345 -0.66014829 -0.1810667  0.5245639
## ENSG00000243485 -0.1407036 -0.25654069 -2.05784819  0.09087783  2.1176562 -1.7655651
## ENSG00000237613 -0.6278446  1.00544937  0.32292541 -0.25451136 -1.5731432 -1.9969867

Another useful property is that we know metadata about the chromosomes, and the version of the genome. (If you were not yet aware, the basepair position of a given feature, say gene XYZ, will change between versions of the genome, as sequences are added or rearranged.)

seqinfo(se)
## Seqinfo object with 25 sequences (1 circular) from GRCh38 genome:
##   seqnames seqlengths isCircular genome
##   1         248956422      FALSE GRCh38
##   10        133797422      FALSE GRCh38
##   11        135086622      FALSE GRCh38
##   12        133275309      FALSE GRCh38
##   13        114364328      FALSE GRCh38
##   ...             ...        ...    ...
##   8         145138636      FALSE GRCh38
##   9         138394717      FALSE GRCh38
##   MT            16569       TRUE GRCh38
##   X         156040895      FALSE GRCh38
##   Y          57227415      FALSE GRCh38

Downloading SE data

We previously introduced the computational project, called recount2, which performs a basic summarization of public data sets with gene expression data. We will use data from recount2 again.

This dataset contains RNA-seq samples from human airway epithelial cell cultures. The paper is here. The structure of the experiment was that, cell cultures from 6 asthmatic and 6 non-asthmatics donors were treated with viral infection or left untreated (controls). So we have 2 samples (control or treated) for each of the 12 donors.

url <- "http://duffel.rail.bio/recount/SRP046226/rse_gene.Rdata"
file <- "asthma.rda"
if (!file.exists(file)) download.file(url, file)
load(file)

We use a custom function to produce a matrix which a count of RNA fragments for each gene (rows) and each sample (columns).

(Recount project calls these objects rse for RangedSummarizedExperiment, meaning it has rowRanges information.)

library(here)
## here() starts at /Users/milove/teach/compbio/compbio_src
source(here("bioc","my_scale_counts.R"))
rse <- my_scale_counts(rse_gene)

We can take a peek at the column data:

colData(rse)[,1:6]
## DataFrame with 24 rows and 6 columns
##                project      sample  experiment         run read_count_as_reported_by_sra
##            <character> <character> <character> <character>                     <integer>
## SRR1565926   SRP046226   SRS694613   SRX692912  SRR1565926                      12866750
## SRR1565927   SRP046226   SRS694614   SRX692913  SRR1565927                      12797108
## SRR1565928   SRP046226   SRS694615   SRX692914  SRR1565928                      13319016
## SRR1565929   SRP046226   SRS694616   SRX692915  SRR1565929                      13725752
## SRR1565930   SRP046226   SRS694617   SRX692916  SRR1565930                      10882416
## ...                ...         ...         ...         ...                           ...
## SRR1565945   SRP046226   SRS694632   SRX692931  SRR1565945                      13791854
## SRR1565946   SRP046226   SRS694633   SRX692932  SRR1565946                      13480842
## SRR1565947   SRP046226   SRS694634   SRX692933  SRR1565947                      13166594
## SRR1565948   SRP046226   SRS694635   SRX692934  SRR1565948                      13320398
## SRR1565949   SRP046226   SRS694636   SRX692935  SRR1565949                      13002276
##            reads_downloaded
##                   <integer>
## SRR1565926         12866750
## SRR1565927         12797108
## SRR1565928         13319016
## SRR1565929         13725752
## SRR1565930         10882416
## ...                     ...
## SRR1565945         13791854
## SRR1565946         13480842
## SRR1565947         13166594
## SRR1565948         13320398
## SRR1565949         13002276

The information we are interested in is contained in the characteristics column (which is a character list).

class(rse$characteristics)
## [1] "CompressedCharacterList"
## attr(,"package")
## [1] "IRanges"
rse$characteristics[1:3]
## CharacterList of length 3
## [[1]] cell type: Isolated from human trachea-bronchial tissues passages: 2 disease state: asthmatic treatment: HRV16
## [[2]] cell type: Isolated from human trachea-bronchial tissues passages: 2 disease state: asthmatic treatment: HRV16
## [[3]] cell type: Isolated from human trachea-bronchial tissues passages: 2 disease state: asthmatic treatment: HRV16
rse$characteristics[[1]]
## [1] "cell type: Isolated from human trachea-bronchial tissues"
## [2] "passages: 2"                                             
## [3] "disease state: asthmatic"                                
## [4] "treatment: HRV16"

We can pull out the 3 and 4 element using the sapply function and the square bracket function. I know this syntax looks a little funny, but it’s really just saying, use the single square bracket, pull out the third element (or fourth element).

rse$condition <- sapply(rse$characteristics, `[`, 3)
rse$treatment <- sapply(rse$characteristics, `[`, 4)
table(rse$condition, rse$treatment)
##                               
##                                treatment: HRV16 treatment: Vehicle
##   disease state: asthmatic                    6                  6
##   disease state: non-asthmatic                6                  6

Let’s see what the rowRanges of this experiment look like:

rowRanges(rse)
## GRanges object with 58037 ranges and 3 metadata columns:
##                      seqnames              ranges strand |            gene_id bp_length
##                         <Rle>           <IRanges>  <Rle> |        <character> <integer>
##   ENSG00000000003.14     chrX 100627109-100639991      - | ENSG00000000003.14      4535
##    ENSG00000000005.5     chrX 100584802-100599885      + |  ENSG00000000005.5      1610
##   ENSG00000000419.12    chr20   50934867-50958555      - | ENSG00000000419.12      1207
##   ENSG00000000457.13     chr1 169849631-169894267      - | ENSG00000000457.13      6883
##   ENSG00000000460.16     chr1 169662007-169854080      + | ENSG00000000460.16      5967
##                  ...      ...                 ...    ... .                ...       ...
##    ENSG00000283695.1    chr19   52865369-52865429      - |  ENSG00000283695.1        61
##    ENSG00000283696.1     chr1 161399409-161422424      + |  ENSG00000283696.1       997
##    ENSG00000283697.1     chrX 149548210-149549852      - |  ENSG00000283697.1      1184
##    ENSG00000283698.1     chr2 112439312-112469687      - |  ENSG00000283698.1       940
##    ENSG00000283699.1    chr10   12653138-12653197      - |  ENSG00000283699.1        60
##                               symbol
##                      <CharacterList>
##   ENSG00000000003.14          TSPAN6
##    ENSG00000000005.5            TNMD
##   ENSG00000000419.12            DPM1
##   ENSG00000000457.13           SCYL3
##   ENSG00000000460.16        C1orf112
##                  ...             ...
##    ENSG00000283695.1            <NA>
##    ENSG00000283696.1            <NA>
##    ENSG00000283697.1    LOC101928917
##    ENSG00000283698.1            <NA>
##    ENSG00000283699.1         MIR4481
##   -------
##   seqinfo: 25 sequences (1 circular) from an unspecified genome; no seqlengths
seqinfo(rse)
## Seqinfo object with 25 sequences (1 circular) from an unspecified genome; no seqlengths:
##   seqnames seqlengths isCircular genome
##   chr1           <NA>       <NA>   <NA>
##   chr2           <NA>       <NA>   <NA>
##   chr3           <NA>       <NA>   <NA>
##   chr4           <NA>       <NA>   <NA>
##   chr5           <NA>       <NA>   <NA>
##   ...             ...        ...    ...
##   chr21          <NA>       <NA>   <NA>
##   chr22          <NA>       <NA>   <NA>
##   chrX           <NA>       <NA>   <NA>
##   chrY           <NA>       <NA>   <NA>
##   chrM           <NA>       TRUE   <NA>

The rowRanges here were determined by the quantification method that the recount2 authors used. We don’t know what the genome is from the seqinfo, but we could look this up from the project website.

The following code I use to clean up the condition and treatment variables:

library(magrittr)
rse$condition %<>% (function(x) {
  factor(sub("-",".", sub("disease state: (.*)","\\1",x) ))
  })
rse$treatment %<>% (function(x) factor(sub("treatment: (.*)","\\1",x)))

Now we have:

table(rse$condition, rse$treatment)
##                
##                 HRV16 Vehicle
##   asthmatic         6       6
##   non.asthmatic     6       6

Visualizing count matrix data in a SE

We will discuss transformations and normalization in a following section, but here we will just use a transformation so that we can compute meaningful distances on count data. We build a DESeqDataSet and then specify the experimental design using a ~ and the variables that we expect to produce differences in the counts. (These variables are used to assess how much technical variability is in the data, but not used in the transformation function itself.)

library(DESeq2)
dds <- DESeqDataSet(rse, ~condition + treatment)
## converting counts to integer mode

We use this function, which implements a variance stabilizing transformation (more on this next time):

vsd <- vst(dds)

We calculate the variance across all samples (on the transformed data):

library(matrixStats)
rv <- rowVars(assay(vsd))
o <- order(rv, decreasing=TRUE)[1:100]

Finally, before plotting a heatmap, we extract the covariates that we want to annotated the top of the plot.

anno_col <- as.data.frame(colData(vsd)[,c("condition","treatment")])
anno_col
##                condition treatment
## SRR1565926     asthmatic     HRV16
## SRR1565927     asthmatic     HRV16
## SRR1565928     asthmatic     HRV16
## SRR1565929     asthmatic     HRV16
## SRR1565930     asthmatic     HRV16
## SRR1565931     asthmatic     HRV16
## SRR1565932     asthmatic   Vehicle
## SRR1565933     asthmatic   Vehicle
## SRR1565934     asthmatic   Vehicle
## SRR1565935     asthmatic   Vehicle
## SRR1565936     asthmatic   Vehicle
## SRR1565937     asthmatic   Vehicle
## SRR1565938 non.asthmatic     HRV16
## SRR1565939 non.asthmatic     HRV16
## SRR1565940 non.asthmatic     HRV16
## SRR1565941 non.asthmatic     HRV16
## SRR1565942 non.asthmatic     HRV16
## SRR1565943 non.asthmatic     HRV16
## SRR1565944 non.asthmatic   Vehicle
## SRR1565945 non.asthmatic   Vehicle
## SRR1565946 non.asthmatic   Vehicle
## SRR1565947 non.asthmatic   Vehicle
## SRR1565948 non.asthmatic   Vehicle
## SRR1565949 non.asthmatic   Vehicle

This code pull out the top of the transformed data by variance, and adds an annotation to the top of the plot. By default the rows and columns will be clustered by Euclidean distance. See ?pheatmap for more details on this function (it’s a very detailed manual page).

library(pheatmap)
pheatmap(assay(vsd)[o,],
         annotation_col=anno_col,
         show_rownames=FALSE, 
         show_colnames=FALSE)

We can also easily make a PCA plot with dedicated functions:

plotPCA(vsd, intgroup="treatment")

SingleCellExperiment

An example of a class that extends the SE is SingleCellExperiment. This is a special object type for looking at single cell data.

For more details, there is a free online book “Orchestrating Single Cell Analysis With Bioconductor” produced by a group within the Bioconductor Project, with lots of example analyses: OSCA.

Here we show a quick example of how this object extends the SE.

library(SingleCellExperiment)
sce <- as(rse, "SingleCellExperiment")
sce
## class: SingleCellExperiment 
## dim: 58037 24 
## metadata(0):
## assays(1): counts
## rownames(58037): ENSG00000000003.14 ENSG00000000005.5 ... ENSG00000283698.1
##   ENSG00000283699.1
## rowData names(3): gene_id bp_length symbol
## colnames(24): SRR1565926 SRR1565927 ... SRR1565948 SRR1565949
## colData names(23): project sample ... condition treatment
## reducedDimNames(0):
## mainExpName: NULL
## altExpNames(0):

There are special functions dedicated to scaling the samples (we will discuss this technical aspect soon):

library(scran)
## Loading required package: scuttle
sce <- computeSumFactors(sce)
sizeFactors(sce)
##  [1] 0.7672143 0.8205514 0.8686567 0.9479224 0.6484723 0.9815079 1.0797070 1.0569889 1.4377886
## [10] 0.9465292 1.4759422 1.2630195 0.8889808 1.0524670 0.9677885 0.8086102 0.8806503 0.8999780
## [19] 0.9505805 1.0430322 1.2527967 0.9908707 0.5208294 1.4491155

Similarly, dedicated functions for transformations:

sce <- logNormCounts(sce)
assayNames(sce)
## [1] "counts"    "logcounts"

And dedicated functions and new slots for reduced dimensions:

set.seed(1)
sce <- fixedPCA(sce, rank=5, subset.row=NULL)
reducedDimNames(sce)
## [1] "PCA"

We can manually get at the PCs:

pca <- reducedDim(sce, "PCA")
plot(pca[,1:2])

But we can more easily use dedicated visualization functions:

library(scater)
plotReducedDim(sce, "PCA", color_by="treatment")

Going further: tidySE

If you are interested in combining the “tidy” dplyr style of interacting with datasets with SE there is tidySummarizedExperiment, a Bioconductor package that integrates this class with these familiar verbs. See for example:

https://stemangiola.github.io/tidySummarizedExperiment/

library(tidySummarizedExperiment)
se <- SummarizedExperiment(assay = list("exprs" = exprs),
                           colData = col_data)
# filter to samples in condition A
se %>% filter(condition == "A")
# total over all genes, per condition
se %>%
  group_by(condition) %>%
  summarize(total=sum(exprs)) 
# the features where mean expression > .25
se %>% 
  group_by(.feature) %>%
  mutate(mean_exprs = mean(exprs)) %>%
  filter(mean_exprs > .25)
sessionInfo()
## R version 4.2.1 (2022-06-23)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Big Sur ... 10.16
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices datasets  utils     methods   base     
## 
## other attached packages:
##  [1] scater_1.25.4               ggplot2_3.3.6               scran_1.25.0               
##  [4] scuttle_1.7.4               SingleCellExperiment_1.19.0 pheatmap_1.0.12            
##  [7] DESeq2_1.37.4               magrittr_2.0.3              here_1.0.1                 
## [10] EnsDb.Hsapiens.v86_2.99.0   ensembldb_2.21.2            AnnotationFilter_1.21.0    
## [13] GenomicFeatures_1.49.5      AnnotationDbi_1.59.1        SummarizedExperiment_1.27.1
## [16] Biobase_2.57.1              GenomicRanges_1.49.0        GenomeInfoDb_1.33.3        
## [19] IRanges_2.31.0              S4Vectors_0.35.1            BiocGenerics_0.43.0        
## [22] MatrixGenerics_1.9.1        matrixStats_0.62.0          pkgdown_2.0.5              
## [25] testthat_3.1.4              rmarkdown_2.14              devtools_2.4.3             
## [28] usethis_2.1.6              
## 
## loaded via a namespace (and not attached):
##   [1] BiocFileCache_2.5.0       igraph_1.3.4              lazyeval_0.2.2           
##   [4] splines_4.2.1             BiocParallel_1.31.10      digest_0.6.29            
##   [7] htmltools_0.5.2           viridis_0.6.2             fansi_1.0.3              
##  [10] memoise_2.0.1             ScaledMatrix_1.5.0        cluster_2.1.3            
##  [13] limma_3.53.4              remotes_2.4.2             Biostrings_2.65.1        
##  [16] annotate_1.75.0           prettyunits_1.1.1         colorspace_2.0-3         
##  [19] ggrepel_0.9.1             blob_1.2.3                rappdirs_0.3.3           
##  [22] xfun_0.31                 dplyr_1.0.9               callr_3.7.0              
##  [25] crayon_1.5.1              RCurl_1.98-1.7            jsonlite_1.8.0           
##  [28] genefilter_1.79.0         survival_3.3-1            glue_1.6.2               
##  [31] gtable_0.3.0              zlibbioc_1.43.0           XVector_0.37.0           
##  [34] DelayedArray_0.23.0       pkgbuild_1.3.1            BiocSingular_1.13.1      
##  [37] scales_1.2.0              edgeR_3.39.6              DBI_1.1.3                
##  [40] Rcpp_1.0.8.3              viridisLite_0.4.0         xtable_1.8-4             
##  [43] progress_1.2.2            dqrng_0.3.0               bit_4.0.4                
##  [46] rsvd_1.0.5                metapod_1.5.0             httr_1.4.3               
##  [49] RColorBrewer_1.1-3        ellipsis_0.3.2            pkgconfig_2.0.3          
##  [52] XML_3.99-0.10             farver_2.1.1              sass_0.4.1               
##  [55] dbplyr_2.2.1              locfit_1.5-9.5            utf8_1.2.2               
##  [58] tidyselect_1.1.2          labeling_0.4.2            rlang_1.0.3              
##  [61] munsell_0.5.0             tools_4.2.1               cachem_1.0.6             
##  [64] cli_3.3.0                 generics_0.1.3            RSQLite_2.2.14           
##  [67] evaluate_0.15             stringr_1.4.0             fastmap_1.1.0            
##  [70] yaml_2.3.5                processx_3.6.1            knitr_1.39               
##  [73] bit64_4.0.5               fs_1.5.2                  purrr_0.3.4              
##  [76] KEGGREST_1.37.2           sparseMatrixStats_1.9.0   xml2_1.3.3               
##  [79] biomaRt_2.53.2            brio_1.1.3                compiler_4.2.1           
##  [82] rstudioapi_0.13           beeswarm_0.4.0            filelock_1.0.2           
##  [85] curl_4.3.2                png_0.1-7                 statmod_1.4.36           
##  [88] tibble_3.1.7              geneplotter_1.75.0        bslib_0.3.1              
##  [91] stringi_1.7.6             highr_0.9                 ps_1.7.1                 
##  [94] lattice_0.20-45           bluster_1.7.0             ProtGenerics_1.29.0      
##  [97] Matrix_1.4-1              vctrs_0.4.1               pillar_1.7.0             
## [100] lifecycle_1.0.1           jquerylib_0.1.4           BiocNeighbors_1.15.1     
## [103] bitops_1.0-7              irlba_2.3.5               rtracklayer_1.57.0       
## [106] R6_2.5.1                  BiocIO_1.7.1              gridExtra_2.3            
## [109] vipor_0.4.5               sessioninfo_1.2.2         codetools_0.2-18         
## [112] assertthat_0.2.1          pkgload_1.3.0             rprojroot_2.0.3          
## [115] rjson_0.2.21              withr_2.5.0               GenomicAlignments_1.33.0 
## [118] Rsamtools_2.13.3          GenomeInfoDbData_1.2.8    parallel_4.2.1           
## [121] hms_1.1.1                 grid_4.2.1                beachmat_2.13.4          
## [124] DelayedMatrixStats_1.19.0 ggbeeswarm_0.6.0          restfulr_0.0.15